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Abstract

Direct numerical simulations have been conducted with many cluster models of beads and connecting springs in a turbulent

channel ¯ow in order to investigate how the low-speed streaks and the small-scale ¯ow related to the streaks are a�ected by the

cluster models. The cluster model represents highly entangled polymers observed in the quiescent and ¯owing aqueous solution. The

cluster models were introduced in the bu�er region to simulate the experiments of Tiederman et al. (Tiederman, W.G., Luchik, T.S.,

Bogard, D.G., 1985. Wall-layer structure and drag reduction. J. Fluid Mech. 156, 419±437) in which the polymer solution was

injected from a slot in the channel wall. An experiment has been carried out for visual observation of highly entangled polymers in a

turbulent channel ¯ow of the same Reynolds number in order to determine a parameter of the cluster model. The computational

results show that the minor streaks and the small-scale eruptive ¯ows associated with the streamwise vortices are attenuated se-

lectively by the cluster models. The length scale and time scale of these structures are comparable to those of the cluster model. On

the other hand, the dynamics of large-scale streaks are found to be basically unchanged. These results are consistent with the

measurement of a suppression of low threshold Reynolds-stress producing motion by Harder and Tiederman (Harder, K.J.,

Tiederman, W.G., 1991. Drag reduction and turbulent structure in two-dimensional channel ¯ows. Philos. Trans. R. Soc. Lond. 336,

19±34). Ó 2000 Begell House Inc. Published by Elsevier Science Inc. All rights reserved.
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1. Introduction

Near-wall coherent structures in turbulent channel ¯ows of
dilute polymer solutions have been focused on in order to
understand the mechanism of drag reduction by polymers.
Oldaker and Tiederman (1977) measured an increase in the
spacing of low-speed streaks caused by polyethylene oxide
(PEO) or polyacrylamide (PAM). Tiederman et al. (1985) re-
ported a decrease in the bursting rate and an increase in the
streak spacing for a water channel ¯ow with an injection of
dilute PAM solutions from a slot into a bu�er region. Harder
and Tiederman (1991) con®rmed experimentally that small-
amplitude Q2 and Q4 events are damped in drag-reduced ¯ow
with the injection of polymers into the bu�er region while the
large amplitude events are una�ected. Similarly, a suppression
of ejection and sweep was concluded by Gampert and Yong
(1990) from their measurement of Q2 and Q4 events in a
turbulent channel ¯ow for uniform solution of PAM.

The e�ect of the polymers on the coherent structure has
been examined numerically recently in more detail. Direct
numerical simulation (DNS) was used for the solvent ¯ow.
Orlandi (1995) and den Toonder et al. (1997) introduced an
anisotropic model for the viscosity to express the polymer
e�ects on solvent ¯ows, and predicted the modi®cation of
coherent structures due to the polymers. Sureshkumar et al.
(1997) reproduced the decrease in the bursting rate by
modifying the stress tensors based on the ®nitely-extendable-
nonlinear-elastic (FENE) model for their DNS. This model
consists of two spherical beads and a connecting spring with
a nonlinear spring constant, and is representative of polymer
chains. Massah and Hanratty (1997) predicted an additional
dissipation of energy by use of several FENE models in their
DNS. Kajishima and Miyake (1998) reproduced the reduc-
tion of Reynolds shear stress and an increase in streak
spacing using many beads±spring±dashpot models in their
DNS.

However, it was hardly possible that the entangled poly-
mers were simulated by the models. These polymers were
observed for a long period in the solution, which is produced
by gentle mixing of polymer powders with water to avoid
mechanical degradation of the polymers (Hagiwara et al.,
1998). The aggregated polymers can exist in a turbulent
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channel ¯ow with injection of the polymer solution (Hagi-
wara et al., 1998) and the channel ¯ows for uniform polymer
solution (Willmarth et al., 1987; Warholic et al., 1999). The
dimension of the entangled polymers is larger than the
smallest length scale of turbulence. We developed a cluster
model of beads and springs as representative of highly en-
tangled polymers (Hagiwara et al., 1997). Our model was
based on irregular network structures in bundles of polymers,
which were observed in the freeze-dried samples from the
¯ows of dilute PEO solutions by James and Saringer (1980)
and Miyamoto (1994). We carried out DNS on turbulent
channel ¯ow with several cluster models in the bu�er region
and showed the small-scale eddy was in¯uenced by the
models (Hagiwara et al., 1997).

In the present study, DNS is carried out for turbulent
channel ¯ow with many cluster models in the bu�er region in
order to simulate the experiment conducted by Tiederman
et al. (1985). Visual observation is also done for estimating a
parameter of the model. Not only the turbulence quantities
but also direct interaction between the cluster models and the
low-speed streaks or the streamwise vortices near the streaks
are examined in order to understand the attenuation of the
Q2 event. Comparison of the Reynolds-stress product at a
typical moment in the case with the cluster models with that
in the case without the models is tried to examine this inter-
action. Direct interaction between the cluster models and the
small-scale eruptive ¯ow in the large-scale streak is also
investigated.

2. Cluster model of beads and springs

2.1. Assumptions

Fig. 1(a) shows the sketch from a photograph from
Miyamoto (1994). Strands which consist of a bundle of poly-
mer chains and nodes where the strands are entangled are
recognised in the irregular network structure in the photo-
graph. We assumed that the nodes were replaced by spherical
beads whose density is the same as that of the solvent ¯ow.
This is reasonable because the nodes take a long time for their

dissolution and the nodes can be considered to be impermeable
for a certain period of the dissolution. It was also assumed that
the beads are of identical size, for simplicity.

Next, we assumed that the strands were replaced by non-
linear springs with no volume. The restitution force of springs
was similar to that of an FENE model, and the spring constant
was identical. If the distance between any two beads was
longer than the critical length, lc, these beads were assumed not
to be connected directly by a spring. lc was 1.99 times larger
than the initial length of each spring. If a spring is longer than
two times of its initial value, it gives an unrealistic restitution
force from the de®nition of the force in the equation men-
tioned below. New entanglement of polymers or the formation
of the network structure can be achieved by adding springs
between the beads, while the breakup of the structure can be
achieved by subtracting the springs. Fig. 1(b) illustrates part of
the cluster.

Finally, the connection between any two beads of two dif-
ferent cluster models was not considered for simplicity. This is
reasonable when the polymer concentration is low and not
completely uniform.

2.2. Motion of beads

The drag force, FD, calculated by the Stokes law of resis-
tance and the restitution force of the spring, FS, were consid-
ered to act on the beads. The equation of motion for the mth
bead is as follows:

Notation

D equivalent diameter of cluster
FD drag force
F 0D reaction to drag force
FS restitution force
h half height of duct
k spring constant
LR streamwise dimension of contours
LT distance for the cluster model to be

transported
L1, L3 dimensions of computational domain in

the X1 and X3 directions
lmn length of spring connecting mth bead

and nth bead
lmn0 initial value of lmn

lc critical length for spring
N1, N2, N3 numbers of grid points in the X1, X2 and

X3 directions
P pressure
Re� Reynolds number based on u� and h
r bead radius
t time

U carrier ¯uid velocity
Um velocity of mth bead
U1, U2, U3 instantaneous velocities in the X1, X2

and X3 directions
U 1 streamwise mean velocity
u1, u2, u3 ¯uctuating velocities in the X1, X2 and

X3 directions
u� friction velocity
V cell volume
Xm location of mth bead
X1, X2, X3 coordinates in the streamwise,

wall-normal and transverse directions

Greeks
DX1, DX2, DX3 grid spacing in the X1, X2 and X3

directions
k relaxation time for dumbbell model
l viscosity
m kinematic viscosity
q density
s relaxation time for solid body
x1 streamwise vorticity

Fig. 1. Observed polymers and cluster model.
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where q is the bead density, r the bead radius, Um and U the
velocities of the bead and the solvent ¯ow at the bead's loca-
tion respectively, l the solvent viscosity, N the total number of
springs connected to the mth bead, lmn and lmn0 the distance
between the bead and the nth bead and its unloaded value,
respectively, Xm and Xn the positions of the mth and nth beads,
respectively, and k is the spring constant.

Um was evaluated by the time integration of a discrete form
of Eq. (1). The second-order Adams±Moulton method was
used for the time integration. Note that the Reynolds number
based on the bead diameter and the velocity di�erence between
the bead and the ambient ¯uid was lower than 1.5, and hence
the Stokes law was satis®ed. The location of the bead was
calculated by the second-order Adams±Moulton method (Pan
and Banerjee, 1996).

2.3. Length scales and spring constant

Table 1 compares the dimensions for the highly entangled
polymers estimated from the results by Miyamato and our
observation mentioned below with those for the cluster model
in the present study. These values are in the nondimensional
forms by using the friction velocity, u�, of the present DNS, the
kinematic viscosity, m, and the channel height in our experi-
ment. The values with brackets in the table indicate the initial
values. The underlined value in the table denotes the experi-
mental result obtained by the present authors. The cluster
volume in the table is calculated from the initial region of
either 29:4m=u� � 14:7m=u� � 14:7m=u� (rectangular prisms) or
14:7m=u� � 14:7m=u� � 14:7m=u� (cube) for each cluster model.
We estimated the apparent spring constant from MiyamotoÕs
discussion in which he calculated the stress, and the ratio of the
length in the shear direction for a mesh in the network struc-
ture and that perpendicular to the direction. It is found from
this table that all the values for the cluster model are realistic
and reasonable.

We assumed that 64 beads were allocated regularly in each
cluster model at the initial state in the case where the region for
each model was the cube, and 128 beads in the case where the
region was the rectangular prism. The unloaded spring length,
lmn0, was assumed to be equal to the initial distance between
two neighbouring beads.

2.4. Relaxation time

We examined the relaxation time for the FENE model
(Massah et al., 1993), k, and that for an equivalent sphere, s, as
reference time scales for the cluster model. These relaxation
times are de®ned by the following equation:

k � 6plr
k

; s � �1=6�qpD3

3plD
� qD2

18l
; �2�

where D is the equivalent diameter of the cluster. k can be
considered as the relaxation time for a pair of beads con-
necting by a spring in the cluster model. s can be regarded as
the relaxation time for the cluster behaving as a solid body due
to the tight connection of the beads. k was equal to 0.31m/u�2,
and s was 1.3m/u�2. The actual characteristic time for the cluster
is expected to be in between these relaxation times for two
extreme cases.

3. DNS for solvent ¯ow

3.1. Momentum equation

The interaction between the bead of the cluster models and
the ¯ow was dealt with as a two-way coupling. The reaction
force to the drag force in Eq.(1) was considered to act on the
solvent ¯ow as an external point force. The momentum
equation of the ¯ow is given as follows:

DU

Dt
� ÿr P

q
� l

q
r2U � 1

qV

X
m�1

Fm
D; �3�

where P is the pressure and V is a cell volume for the reaction
force. All the ¯uid properties were assumed to be equal to that
of a Newtonian ¯uid and constant.

3.2. Computational domain

The computational domain was assumed to be a box of
2ph� 2h� ph for a ¯ow between two walls at the distance of
2h. The origin of the coordinates was at the corner of the lower
wall. The X1, X2 and X3 axes were positioned in the stream-
wise, wall-normal and transverse directions, respectively. The
domain was divided into a total of 64� 96� 64 cells. The cell
dimension is identical either in the X1 or the X3 direction. It
increases from the walls to the axis based on a hyperbolic
tangent. The velocity components were assigned at the centre
of the cell surfaces (grid points for velocities), and the pressure
and the external force were assigned at the centre of the cell
(grid points for forces). The Reynolds number based on h and
u� was 150. The Reynolds number de®ned by the mean cen-
terline velocity and the wall distance was 5306. In Table 2, the
domain size, the number of grid points, the grid spacing, and
the Reynolds number are compared with those adopted in
DNSs for channel ¯ows with the polymer models (Massah and
Hanratty, 1997; Kajishima and Miyake, 1998) and those
without the models (Kawamura, 1995; Kuroda et al., 1995).

3.3. Computational schemes

The second-order central di�erence scheme based on the
interpolation method (Kawamura, 1995; Kajishima, 1994; see
Appendix A) and that without the method were applied
to the ®nite di�erencing of the convection terms and the
viscous terms of the momentum equations, respectively. The

Table 1

Parameters of the cluster model

Miyamoto Cluster model

Shear rate 0.28 0:2±1:0 (bu�er region)

Concentration (ppm) 500 450 (bu�er region)

Volume 1:5±12� 103 [3:2� 103]

Node (bead)

Diameter 0:24±0:56 1.0

Number density 0.032 [0.020]

Strand

Thickness 0:075±0:15 0

Length 1:05±3:0 [4.9]

Critical length ± 9.8

Spring constant 0.27 0.2
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second-order Adams±Bashforth method was used for the ex-
plicit time integration of the convection terms, the viscous
terms and the external-force terms. The fractional-step method
was adopted for the implicit time integration of the pressure
terms.

In the discretised form of Eq. (3), the reaction force to FD

for each bead was distributed to eight neighbouring grid points
for forces by a spatial interpolation method. Similarly, the
¯uid velocity near a bead in the right-hand side of Eq. (1) was
calculated from the values at eight neighbouring grid points
for velocities by the spatial interpolation method.

3.4. Initial and boundary conditions

The result of a preliminary computation without the cluster
models was adopted as the initial velocity ®eld of the main
computation after a statistically developed state was con-
®rmed. The universal velocity distribution superimposed on
sinusoidal velocity ¯uctuation in the three directions was taken
as the initial velocity ®eld for the preliminary computation.
This velocity ®eld satis®ed the local and overall mass conser-
vation.

200 cluster models were distributed nearly uniformly in the
bu�er region (10 < X�2 < 30) of the database at the initial state
in the case where the region for each model was the cube. A
total of 100 models whose initial region was rectangular prism
were distributed nearly uniformly in two bu�er regions
(10 < X�2 < 30 and 270 < X�2 < 290) to calculate turbulence
quantities. These distributions are based on the experiment
carried out by Tiederman et al. and our observation. The
volume fraction and thus the concentration of the cluster
models was estimated from the total number and the volume
of the beads. The concentration was 20 ppm for all the com-
putational domain and 450 ppm for the bu�er region. This is
comparable to 500 ppm for the case referred to in one of the
experimental conditions by Miyamoto (see Table 1), and from
100 to 400 ppm in the case of our experiment and TiedermanÕs
experiment.

The initial location of the beads was uniform in the initial
cluster region mentioned above. The springs were arranged so
that only the nearest two beads can be connected by one spring
for the initial beads arrangement. This prevented unrealistic
over-entanglement, such as the situation where beads diago-
nally positioned were also connected by the springs. All the
beads have no slip velocity in the initial state.

The nonslip boundary condition was imposed for the walls.
The periodical boundary condition was applied for velocity
components, pressure and the cluster models in the X1 and X3

directions. Some of the cluster models lifted-up and trans-
ported in the core region stay in this region for a long time due
to periodical boundary condition in the streamwise direction.
This is not the same situation as in the experiment carried out
by Tiederman et al. and present authors mentioned below. In
order to avoid this discrepancy, the model was removed from

the region and rede®ned in the bu�er region, when a bead of
any cluster model reached X�2 � 150.

4. Experimental observation for entangled PEO

We carried out an experiment for the simultaneous visu-
alisation of the low-speed streaks and ¯owing highly entangled
PEO in a turbulent duct ¯ow to estimate the volume of the
cluster model. Fig. 2 shows the experimental apparatus. The
test section was the fully developed region in the horizontal
duct of 2000 mm in length, 2h � 20 mm in height and 160 mm
in width. A dilute solution of PEO was injected into the main
¯ow from a transverse slot 1.0 mm in streamwise width at 45°
on the duct upper wall. The injection ¯ow rate was adjusted so
that the solution was introduced into the bu�er region of the
main ¯ow. This method is similar to that used by Tiederman et
al. The ratio of the ¯ow rate per unit transverse length for the
injection to that for the main ¯ow was about 0.0065.

We adopted small pieces of an acrylic polymer-emulsion
colour as tagging material for highly entangled PEO in the
¯ow. These pieces were con®rmed to stick to the polymer for a
long time in the solution. An aqueous solution of Rhodamine
B was injected into the linear sublayer from the other slot in

Fig. 2. Experimental apparatus: (a) schematic diagram; (b) injection

slots.

Table 2

Domain size and grid resolution

Case L1/h L3/h N1 N2 N3 DX�1 DX�2 DX�3 Re�

Present 2p p 64 97 64 14.7 0:85±5:4 7.36 150

Kajishima 7.7 3.8 64 64 64 18 0:93±9:0 9.0 150

Massah 13 6.3 128 65 128 14.8 NA 7.42 150

(without polymer model)

Kawamura 6.4 3.2 128 66 128 9.0 0:8±11:8 4.5 180

Kuroda 5p 2p 128 96 128 18.4 0:08±4:9 7.4 150
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order to visualise the low-speed streaks, which is similar to that
carried out by Tiederman et al. (1985).

The images of the small pieces of the colour and the dye
were captured by a progressive-scan video camera. The output
signal of the video camera was directly recorded into a PC as
digital images through a frame grabber. The Reynolds number
based on the mean centerline velocity was 5:25� 103.

5. Results and discussion

5.1. Estimation of the volume of entangled polymers

It was observed in the captured images that some groups of
colour pieces (that is highly entangled polymers) were trans-
ported downstream. Fig. 3 is a typical frame captured. The
white dots in the ®gure show colour pieces. The dimension of
the group was in the range of 0:94 � 1:9 mm. Assuming that
the core region of the entangled polymers has a spheroidal
shape, the volume of the region was determined. The range of
the volume was shown in the nondimensional form in Table 1.
Note that the increase in the transverse spacing of the low-
speed streaks and the attenuation of the streamwise vortices
were also observed with this apparatus in nearly identical ¯ow
conditions (Imamura et al., 1999; Hagiwara et al., 2000).

5.2. Turbulence quantities

The following statistical turbulence quantities were calcu-
lated from the ensemble averages over space and time for
1050m=u�2 from t� � 450. In the following ®gures, the open
circles indicate the values in the case without the cluster models
(i.e., the Newtonian ¯uid), and the solid circles indicate those
in the case with the models. The DNS results of the spectral
method by Kuroda et al. (1995) are also drawn.

Mean velocity and turbulence intensities: Fig. 4 shows the
mean velocity pro®le. This velocity is slightly decreased in the
bu�er region and increased in the log region by the cluster
models. This is in qualitative agreement with the experimental
result,though the decreasing or increasing rate is less than the
experimental data (Luchik and Tiederman, 1988). This dis-
crepancy is consistent with the result and discussion by
Toonden et al. (1999) that the increase in the mean velocity due
to the polymer model was underestimated in case of DNS for
much lower Reynolds number than their experiment.

It is found from Fig. 5 that the turbulence intensity in the
streamwise direction is increased while those in the wall-nor-
mal and transverse directions are decreased in the bu�er region
by the cluster models. These results are also in qualitative
agreement with the experimental results (Luchik and
Tiederman, 1988).

Reynolds-shear stress: Fig. 6 demonstrates the pro®les of
the Reynolds-shear stress, u1u2, and the mean shear stress,
dU 1=dX2. The Reynolds-shear stresses are found to be lower in
the case with the cluster models than in the case without the
models. This shows that the turbulence structure and its dy-
namics were attenuated by the cluster models. This attenuation
causes the slight de®cit of the total shear stress,
ÿu1u2 � �1=Re�dU 1=dX2. This is consistent with the experi-
mental results for a slight decrease in the wall shear stress
measured by Luchik and Tiederman (1988).

Turbulent kinetic energy: Fig. 7 indicates the budget of
turbulent kinetic energy. The production and dissipation of the
turbulent kinetic energy in the case with the cluster models are
found to be slightly lower than in the case without the models.
The attenuation of the production is due to the decrease in the
Reynolds-shear stress by the models.

Fig. 8 demonstrates the orthogonal components of the
pressure±strain terms, that is, the redistribution terms. The
absolute values of all the terms are found to be decreased by the
cluster models particularly in the bu�er region. This shows that
the redistribution of the turbulent kinetic energy in the
streamwise direction to those in the other directions was at-
tenuated. Therefore, it is expected that the vortical motion
contributing to the redistribution mechanism of the turbulent

Fig. 3. Typical image of visualised PEO lumps (white dots) and

low-speed streaks (white area).

Fig. 4. Mean velocity pro®le.

Fig. 5. Turbulence intensities.
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kinetic energy was attenuated by the cluster models. The
modi®cation of the redistribution terms is in agreement with
the DNS result obtained by Kajishima and Miyake (1998).

5.3. Location of the cluster models, the streaks and the vortices

In the following, we focus on our result in the early stage
before the beginning of the aforementioned ensemble average.
This is because we can compare directly the result in the case
with the cluster models with that in the case without the

models, and discuss the direct e�ect of the models without
considering the indirect e�ect of the accumulated interaction
for a long time.

Fig. 9(a) shows the snapshot of the cluster models in black,
the low-speed streaks in dark grey and the streamwise vortices
in light grey in the bottom half of the computational domain at
t� � 6:0. Figs. 9(b) and (c) indicate the magni®ed part of the
small boxes A and B in Fig. 9(a), respectively. We de®ned
the low-speed streaks as the regions where u1 < ÿ3:0u� (u1 is
the ¯uctuating component of the streamwise velocity). The
area in which the absolute values of the streamwise vorticity is
larger than 0.2u�2/m was regarded as the streamwise vortices
based on the DNS study by Tsujimoto and Miyake (1998).
This coherent structure is basically identical with that in the
case without the cluster models at the same instant.

Three major low-speed streaks are seen in this ®gure. The
largest streak is seen in the area of 2:5 < X3=h < 3:0. This
streak was lifted up around X1=h > 4:0, and the top of the
streak reached midplane of the channel (the upper surface of
the box in Fig. 9(a)). The di�usion associated with the ejection
and the bursting are observed in this streak. Two other streaks
are seen in the area of 0 < X3=h < 0:8. Two minor low-speed
streaks are also seen in the central area. These minor streaks
are found from the successive results to develop into major
streaks as time proceeds. A pair of streamwise vortices is found
to be adjacent to some part of all these streaks (see Figs. 9(b)
and (c)). These vortices are counter-rotating as shown in
Figs. 11 and 13. These vortices are con®rmed to be associated
with the dynamics of the streaks from the numerical results at
an advanced time. The average streak spacing in the transverse
direction was about 120 viscous wall units. Four or ®ve streaks
were observed through the period of ensemble average. These

Fig. 6. Shear stress distribution.

Fig. 8. Redistribution terms.

Fig. 7. Budget of turbulent kinetic energy.

Fig. 9. Snapshot of cluster models, low-speed streaks and streamwise

vortices (t� � 6:0) (rectangular prism cluster models): (a) bottom half

of the computational domain; (b) magni®ed view of region A;

(c) magni®ed view of region B.
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results are similar to those of DNS conducted by other re-
searchers (for example, Robinson et al., 1990).

Most cluster models in the ®rst and second rows from the
transverse boundary in the upper left of the domain are found
to be inside or near two major streaks. A few cluster models in
the fourth, ®fth and seventh rows are near two minor streaks.
The orientations of the cluster models close to both the minor
streak and the minor (developing) streamwise vortex are found
to be totally di�erent from those of the other models, which
were stretched in the streamwise direction by the mean shear
(See Fig. 9(b)). This indicates that these models are a�ected by
the local ¯ow associated with the streak or the vortex. Many
cluster models in the eighth, ninth and tenth rows are near or
inside the largest streak. These models are a�ected by the local
¯ow related to the streak. In particular, the models seen in
Fig. 9(c) are highly deformed.

In Table 3, the transverse length and the characteristic time
of the cluster are compared with the transverse length and the
duration of the streaks in the present computation. The data
with brackets in the table are based on the summary by Meng
(1998). The lengths of the minor streaks and the eruption of
the low-speed streaks mentioned below are found to be com-
parable to that of the cluster.

5.4. Reynolds-shear stress product

Attenuation and enhancement of product: Fig. 10 demon-
strates the contour map of the di�erence between positive
values of the Reynolds-shear stress product with clusters,
ÿu1u2, and that without clusters in the plane X�2 � 15 at the
same instant as that of Fig. 9. This is the direct comparison of
Q2 or Q4 event for these two cases. Broken lines indicate
negative values of the di�erence, thus decreases in the values of
the product. The contour level is ÿ0:02;ÿ0:04;ÿ0:06 and
ÿ0:08u�2. Solid lines indicate increases in the values of the
product. The contour level is 0.02, 0.04, 0.06 and 0.08u�2. The
squares A and B in this ®gure correspond to the boxes A and B
in Fig. 9(a), respectively.

Four di�erent types of contours are seen in Fig. 10. First,
the product is unchanged in some small areas. Almost all the
cluster models in these areas are found to be irrelevant to the
coherent structure.

Second, the contiguity of the positive contour and the
negative contour is seen in some areas, such as 0 < X3=h < 0:8.
Most cluster models in this area are partly inside the vortices
or streaks. The velocity of the model centre was between that
at one end of the model and that at the other end. The velocity
di�erence, thus the drag force at one end of the model is op-
posite to that at the other end. This is the reason for the
contiguity. As a result, net increase or decrease in the
Reynolds-stress product due to these cluster models over
the whole plane is not expected for the moment.

Third, the cluster models near the minor streak in Fig. 9(b)
is found not to enhance but to attenuate the shear stress
product. The shear stress product decreased more than
ÿ0:04u�2 and the outward ¯uctuating velocity �u2 attenuated

more than 5%. These results suggest that the interaction be-
tween the cluster models and the minor streak may attenuate
the Q2 event associated with the streak or its relevant vortex.

Finally, the cluster models inside the largest streak in
Fig. 9(c) enhance the Reynolds-shear stress product in a nar-
row region and attenuate it in a wide region noticeably. The
di�erence in the shear stress product reached more than
�0:04u�2 in some narrow regions. This is not the same as the
second type of change in the product. The last two types of
interaction between the models and the turbulence structure
are expected to contribute to the attenuation of Q2 event.
Therefore, the velocity ®eld is discussed below.

Streamwise dimension of contour: The contour map repre-
sents not only instantaneous interaction between the cluster
model and the local turbulence structure but also ÔfootprintÕ or
the evidence of the previous interactions. In order to under-
stand this indirect e�ect, we compared the streamwise dimen-
sion, LR, for the region in which the Reynolds-shear stress
product is a�ected with the distance, LT, for the cluster to be
transported for the period through which the cluster gives the
reaction of the drag force, F 0D, on the grid point. LT was about
0.4 h in this case. LR associated with the cluster irrelevant to
the streaks is shorter than LT. On the other hand, LR associ-
ated with the cluster near or inside the streaks is found to be
longer than LT even in the case of minor streaks. This shows
that the modi®cation of the ¯uctuating velocity around the
distant cluster exerts an in¯uence on the product through the
velocity ®eld even after the direct e�ect of the cluster vanishes.
This is consistent with the aforementioned attenuation of the
redistribution mechanism of turbulent kinetic energy in
the streamwise direction to those in the other directions by the
cluster models. The aforementioned e�ects of the cluster were
also observed in the case where the initial region for each
cluster was the rectangular prisms.

5.5. Minor streak±cluster interaction

Fig. 11 shows the instantaneous velocity ®eld in the (X2,
X3)-plane at X1 � 4:6 h in the region A in Fig. 9(a), including

Table 3

Comparison of scales

Transverse length Duration

Cluster model 14.7 0:34 < t < 1:3
Minor streaks � 15 ±

Low-speed streaks � 40±70 [100] ÿ�� 480�
Ejection � 20�10±30� ÿ�� 20�
Eruption � 15 <4

Streamwise vortices � 40 ±

Fig. 10. Contour map of the di�erence between the Reynolds shear

stress product with cluster models and that without cluster models

(contour level� 0.02, 0.04, 0.06, 0:08u�2 for solid lines, �)0.02, )0.04,

)0.06, ÿ0:08u�2 for broken lines).
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the cross sections of the minor streak drawn in Fig. 9(b) in
black and the beads of the cluster model in solid circles. Note
that the diameter of the beads is about three times larger than
the actual diameter. The contours are also drawn in this ®gure
for the di�erence between the wall-normal velocity with cluster
models and that without cluster models. The ¯ow from a left-
hand side of the streak changed its direction from transverse to
outward near the streak. The outer shape of the cluster model
on the plane was deformed from horizontal oval to crescent by
this change in the ¯ow direction while it was transported from
left to right in the ®gure. The springs in the model acted to
recover the model shape. Thus, the relative motion is generated
to the beads, then the drag force in the outward direction was
generated on the beads. At the same time, F 0D acted as a re-
sistance to the outward ¯ow (see Fig. 12). Thus, the outward
¯uctuating velocity decreased, and the Q2 event and the
Reynolds-shear stress product were attenuated. Since the
transverse length of the streak is comparable to the cluster
dimension, this attenuation of the shear stress product oc-
curred in the whole region of the streak. Therefore, the minor
streak became inactive, and the evolution of the streak was
prevented. This is expected to be one of the reasons for the
decrease in the streaks observed by Tiederman et al. (1985).

5.6. Large-scale streak±cluster interaction

Fig. 13 shows the velocity ®eld in the (X2, X3)-plane at
X1 � 0:54 h including the cross sections of the large-scale
streak in black and the beads of the cluster in solid circles. The
contours in this ®gure indicate the di�erence between the wall-
normal velocity with cluster models and that without cluster
models. As shown in Table 3, this streak has a larger transverse
length and longer time scale compared with those of the cluster
model.

A strong out¯ow is observed to penetrate the thin streak.
This ¯ow was found to be characterised by the following
events: u2 increased with the distance from the wall in the
bu�er region, and a converged ¯ow was induced by the out¯ow
in the bu�er region. The streamwise length of the out¯ow was

Fig. 11. Velocity ®eld in the (X2, X3)-plane at X1 � 4:6 h in the region

A with the cross sections of the minor streak, the beads and the con-

tours of the di�erence between the wall-normal velocity with cluster

models and that without cluster models (contour level� 0.005, 0.010,

0:015u�).

Fig. 12. Conceptual model for the attenuation of Q2 event near the

minor streak: (a) while the cluster model approaches the streak:

(b) while the model is deformed.

Fig. 13. Velocity ®eld in the (X2, X3)-plane at X1 � 0:59 h in the region

B with the cross sections of the minor streak, the beads and the con-

tours of the di�erence between the wall-normal velocity with cluster

models and that without cluster models (contour level� 0.005, 0.010,

0:015u�).

Fig. 14. Contour maps of the streamwise vorticity and its di�erence:

(a) the streamwise vorticity (contour level� 0.10, 0.15, 0.20, 0:25u�2=m
for solid lines, �)0.10, )0.15, )0.20, 0:25u�2=m for broken lines); (b)

the di�erence between the streamwise vorticity with cluster models and

that without cluster models (contour level� 0.001, 0.002, 0.004,

0:008u�2=m for solid lines,�)0.001, )0.002, )0.004, 0:008u�2=m for

broken lines).
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not so long compared with the transverse length of the ¯ow
(about 15m=u�). The duration was estimated to be shorter than
4m=u�2. From observations, this ¯ow appears to be similar to
the eruption of the low-speed streaks studied by Smith and
Walker (1995) and Zhou et al. (1999). The eruption is con-
sidered to be self-sustenance of the quasi-streamwise vortices
and to be followed by a bursting event.

Part of the out¯ow is found to approach the cluster model.
The strong drag force is generated on the beads by the non-
uniform distribution of u2 in the eruptive ¯ow. At the same
time, F 0D attenuates the out¯ows noticeably. Also, the wall-
normal velocity of the ¯uid coming into the eruptive part is
found from the contours to be attenuated in a wide region.
These lead to an attenuation of the eruptive ¯ow.

This e�ect of this cluster model on this eruptive ¯ow re-
sulted in the attenuation of self-sustenance of the quasi-
streamwise vortex appearing in the right-hand side of the
cluster in Fig. 13. Fig. 14(a) demonstrates the contour map of
the streamwise vorticity, x1, in the case with cluster models
and Fig. 14(b) shows the di�erence between the vorticity with
clusters and that without clusters in the plane X�1 � 0:54 at
t� � 6. Broken lines indicate negative values and thus the
vorticity decreases in the region drawn by the lines. It is found
that the streamwise vorticity for the quasi-streamwise vortex in
the right bottom of the ®gure was attenuated by the cluster
model in Fig. 13. This is due to the attenuation of the eruptive
¯ow, e�ective for the sustaining mechanism of the vortex, by
the cluster model. This result is consistent with that simulated
by Orlandi (1995). This could be a reason for the decrease in
the bursting rate measured by Tiederman et al. (1985).

6. Conclusions

Direct numerical simulation was carried out for a turbulent
channel ¯ow with many cluster models of beads and springs
representing highly entangled polymers in the bu�er region.
The main conclusions are as follows:
1. The dimensions, number density and apparent spring con-

stant of the present cluster model are comparable to those
of real entangled polymers.

2. The minor streaks, which may develop into large-scale
streaks, was attenuated by the cluster model whose trans-
verse length and duration are comparable to those of the
minor streaks.

3. The cluster model attenuates the strong eruptive outward
¯ows, whose transverse length scale and relaxation time
are comparable to those of the cluster, associated with the
large-scale low-speed streaks.

4. These e�ects of the cluster model on the small-scale near-
wall coherent structure can be regarded as the cause of
the observation made by Tiederman et al. (1985).
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Appendix A

In the second-order central di�erence scheme with the in-
terpolation method, the gradient form of the convection term

was evaluated not at the grid point but at half the grid-spacing
in the direction of convection from the grid point. Then the
interpolated value of two adjacent gradient forms in the di-
rection of convection was assigned at the grid point between
the two points where the forms were evaluated. This evalua-
tion satis®es numerical consistency between the mass conti-
nuity and the momentum convection in case of uniform grid
arrangement. Kawamura reported that the computational re-
sults of low-order turbulence quantities and the time change
and the budget of turbulent kinetic energy using this scheme
showed good agreement with the results obtained using the
spectral method even in the case for nonuniform grid
arrangement shown in Table 2.

The convection terms for the velocity of U1 are expressed as
follows:

U1

oU1

oX1

����
i�1=2;j;k

� U2

oU1

oX2

����
i�1=2;j;k

� U3

oU1

oX3

����
i�1=2;j;k

� 1

2

U1ji�3=2;j;k � U1ji�1=2;j;k

2
� U1ji�3=2;j;k ÿ U1ji�1=2;j;k

DX1

�"

� U1ji�1=2;j;k � U2jiÿ1=2;j;k

2
� U1ji�1=2;j;k ÿ U1jiÿ1=2;j;k

DX1

�
� U2ji�1;j�1=2;k � U2ji;j�1=2;k

2
� U1ji�1=2;j�1;k ÿ U1ji�1=2;j;k

�DX2jj�1 � DX2jj�=2

 

� U2ji�1;jÿ1=2;k � U2ji;jÿ1=2;k

2
� U1ji�1=2;j;k ÿ U1ji�1=2;jÿ1;k

�DX2jj � DX2jjÿ1�=2

!

� U3ji�1;j;k�1=2 � U3ji;j;k�1=2

2
� U1ji�1=2;j;k�1 ÿ U1ji�1=2;j;k

DX3

�
� U3ji�1;j;kÿ1=2 � U3ji;j;kÿ1=2

2
� U1ji�1=2;j;k ÿ U1ji�1=2;j;kÿ1

DX3

�#
;

where U2 and U3 are the velocity components in the X2 and X3

directions, respectively. The subscripts i, j and k denote the
grid location in the X1, X2 and X3 directions, respectively.
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